Characteristics and Potential Values of Bio-Products Derived from Switchgrass Grown in a Saline Soil Using a Fixed-Bed Slow Pyrolysis System
نویسندگان
چکیده
Switchgrass harvested from saline soil was slowly pyrolyzed at 300, 500, and 700 °C in a fixed-bed reactor. The objective was to understand the characteristics and evaluate the potential values of the bio-oil, syngas, and biochar. The biochar yield (27.0% to 41.3%) decreased with increasing temperature, whereas the syngas yield (26.3% to 40.9%) increased. The bio-oil yield (30.8% to 34.1%) was highest when the switchgrass was pyrolyzed at 500 °C. Both the biooil and syngas had low value as direct fuels because of their low heating values. Compared with the biochars from the switchgrass grown in “sweet” soil, the biochars derived from the switchgrass grown in saline soil had higher values of ash (10.5% to 17.2%), mineral nutrients, and cation exchange capacity (CEC) (200.3 to 241.1 cmol/kg). These results suggested that the biochar generated in this study might have a better liming effect and improvement of soil fertility and crop growth as a soil conditioner, and lead to double wins in saline soil improvement and a new approach for switchgrass utilization.
منابع مشابه
Thermochemical Conversion: Jatropha curcus in Fixed Bed Reactor Using Slow Pyrolysis
Thermochemical conversion of non-edible biomass offers an efficient and economically process to provide valuable fuels and prepare chemicals derived from biomass in the context of developing countries. Pyrolysis has advantages over other thermochemical conversion techniques because it can convert biomass directly into solid, liquid and gaseous products by thermal decomposition of biomass in the...
متن کاملChemical Composition of Bio-oils Produced by Fast Pyrolysis of Two Energy Crops†
Bio-oils from the fast pyrolysis of switchgrass forage and two sets of alfalfa stems (from two stages of developmentsbud and full flower stages) have been analyzed by wet-chemical methods, GC-MS, and HPLC. The chemical composition of bio-oil is important because it may give insights into its quality, stability, or suitability for downstream upgrading. Pyrolysis experiments were conducted at 500...
متن کاملBio-Remediation of Acid Mine Drainage in the Sarcheshmeh Porphyry Copper Mine by Fungi: Batch and Fixed Bed Process
Acid mine drainage (AMD) containing high concentrations of iron and sulphate, low pH and variableconcentrations of heavy metals leads to many environmental problems. The concentrations of Cu and Mnare high in the AMD of the Sarcheshmeh porphyry copper mine, Kerman province, south of Iran. In thisstudy, the bio-remediation of Cu and Mn ions from acid mine drainage was investigated using two nati...
متن کاملCharacterization of Bio-Oil, Syn-Gas and Bio-Char from Switchgrass Pyrolysis at Various Temperatures
Pyrolitic conversion of lignocellulosic biomass, such as switchgrass and other agricultural residues, to bio-fuels is being considered for national energy security and for environmental advantages. Bio-oil, syngas and bio-char were produced and characterized from switchgrass at 400, 500 and 600 0C by pyrolysis. Bio-oil yield increased from 22 to 37%, syn-gas yield increased from 8 to 26%, and b...
متن کاملCharacteristics of products from fast pyrolysis of fractions of waste square timber and ordinary plywood using a fluidized bed reactor.
Fractions of waste square timber and waste ordinary plywood were pyrolyzed in a pyrolysis plant equipped with a fluidized bed reactor and a dual char separation system. The maximum bio-oil yield of about 65 wt.% was obtained at reaction temperatures of 450-500 °C for both feed materials. For quantitative analysis of bio-oil, the relative response factor (RRF) of each component was calculated us...
متن کامل